Pärnu mnt 105, 11312 Tallinn, Estonia

Dashboard for E-commerce Data Extractor

The DigitalMara team resolved a problem of usability for e-commerce data extractor by developing a user-friendly interface that united all components in the data-analytics ecosystem as a microservices structure. The system helps e-commerce players build their sales strategies, allowing them to focus on the market quickly and painlessly.

Technologies

Industries

About the client

Tech startup from UK

A tech startup from the UK came to DigitalMara with an idea to create a unique solution for collecting web data at an enterprise level and building smarter analytics. A product aimed at analytics providers, brands, and retailers, helping e-commerce players build their sales strategies by focusing on the market quickly and painlessly.

Challenge

The client already had a complex extractor with legacy code, which could only be used by tech specialists. They needed a new user-friendly platform with a simple user flow. The DigitalMara team added to the system a new component that resolved the usability issue. The platform can now be used by marketers, sales, brand owners and business analysts.

For analytics providers, it is an opportunity to improve their product and provide additional service to their clients. Brands can gather evidence about which items are selling better and what attracts customers, i.e., the product itself and its representation on a product detail page. Retailers can study their competitors to help optimize their own sales.

Approach

In general, web data extraction tools automate the process of web harvesting and make it possible to obtain real-time web data from multiple sources. They can parse the HTML, fetch the data, and integrate it into the database.

The client’s technical solution pulled information from websites and analyzed it, but didn’t have a dashboard where the results of web harvesting were displayed. The entire process was too complicated and confusing.

Idea and realization flow 

To enhance productivity, the client decided to develop a new data-analytics ecosystem as a microservices structure — which meant exchanging its old monolithic service for two new, lightweight services. The first one allows making HTML snapshots of product cards. The second sets the frequency with which snapshots are taken and requests are sent to the platform. The services were developed on the client side, while the DigitalMarа team integrated a new interface into the system. The platform with which the final user interacts sends a command to the first service. And if it can’t parse data, command goes to the old service. On the next development stage adding the second service to the flow is specified. In that way command goes to the second service, which sets a frequency for receiving data, and then to the first service.

The client had a vision of the final result and, accordingly, a pool of tasks for the DigitalMara team. They had a prototype and some mockups in Figma and were asked to build an MVP. The DigitalMara team started with an estimate, then worked out the UI/UX design for the product. In the next stage, developers got involved and came up with a specific platform that would become a user-friendly interface. It unites all the components into one system and allows the user to gather data from existing extractors and to see data from product details pages.

Functionality

The platform has an easy-to-use and smooth user flow:

  1. Registration
  2. Choosing an e-commerce website
  3. Choosing the item
  4. Receiving snapshots with product info

Trade items can be found according to Amazon Standard Identification Number (ASIN), keyword, stock keeping unit (SKU) and brand page URL. As the first stage, parsed data is exported to .ndjson format. As the next stage, for user convenience, the function of exporting to csv is specified. Data is visualized on the dashboard; the user receives detailed product info and can evaluate statistics dynamically for a particular time period.

Monetization on the platform is carried out through payments for requests to store product pages. The payment amount depends on the number of requests.

The platform was launched and tested with Amazon before several other e-commerce websites were added. The final version had 21 sources in total, such as ALDI, Boots, Ocado, RUBIX, etc. Each store had its own pre-written parser, provided by the client.

Results

The developed platform allows users to choose and check out information in product cards from various e-commerce sites, comparing pricing policies and identifying working hypotheses about the most effective presentation of items to consumers. Based on this data, the client’s customers can make better predictions and operational decisions in their online stores and adjust their sales strategy accordingly. They can spend less time collecting information and more time analyzing data and making informed decisions.

Get case study as PDF

    Thank you

    The PDF has been sent to you via email. If you have any questions, please don't hesitate to reach out to us.

    Similar case studies

    Similar case studies

    Evolution of the search algorithm for a proprietary insights platform 

    DigitalMara strengthened the client’s data engineering team to help with optimizing and refining search functionality within an insights platform, which provides insights on leadership and executive search.
    AWS
    ElasticSearch
    MongoDB
    MySQL
    OpenSearch
    Python

    Similar case studies

    Similar case studies

    Restaurant Bookkeeping Solution

    The DigitalMara team has developed an extensive project for restaurants that helps accountants keep track of resources in real-time and allows wait staff to serve guests and accept payments from them using mobile devices and terminals.
    AWS
    Delphi
    Node.js
    React Native

    Similar case studies

    Similar case studies

    Upgrading Web app Cloud access platform for Smart homes 

    DigitalMara helped to upgrade the remote access web app for our smart home platform, using a new architecture and re-implementing almost all the functionality of the original app. It provides remote access to one or more smart home control systems.
    .NET
    C#
    Microsoft Azure
    MySQL
    Let’s talk
    Please provide your contact details

      Success
      Your message has been sent
      Thank you for contacting us. We will consider your request and will contact you as soon as possible. We wish you all the best!
      Ok